Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
1.
J Inorg Biochem ; 247: 112344, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37542850

RESUMEN

α-Synuclein (αS) is a presynaptic protein whose aggregates are considered as a hallmark of Parkinson's disease (PD). Although its physiological function is still under debate, it is widely accepted that its functions are always mediated by its interaction with membranes. The association of αS with phospholipid membranes occurs concomitant to its folding from its monomeric, unfolded state towards an antiparallel amphipathic α-helix. Besides this, copper ions can also bind αS and modify its aggregation propensity. The effect of Cu(II) and Cu(I) on the lipid-αS affinity and on the structure of the membrane-bound αS have not yet been studied. This knowledge is relevant to understand the molecular pathogenesis of PD. Therefore, we have here studied the affinities between Cu(II) and Cu(I) and the micelle-bound αS, as well as the effect of these cations on the structure of micelle-bound αS. Cu(II) or Cu(I) did not affect the α-helical structure of the micelle-bound αS. However, while Cu(I) binds at the same sites of αS in the presence or in the absence of micelles, the micelle-bound αS displays different Cu(II) binding sites than unbound αS. In any case, sodium docecyl sulphate -micelles reduce the stability of the αS complexes with both Cu(II) and Cu(I). Finally, we have observed that the micelle-bound αS is still able to prevent the Cu(II)-catalysed oxidation of neuronal metabolites (e.g. ascorbic acid) and the formation of reactive oxygen species, thus this binding does not impair its biological function as part of the antioxidant machinery.


Asunto(s)
Enfermedad de Parkinson , alfa-Sinucleína , Humanos , alfa-Sinucleína/metabolismo , Micelas , Cobre/química , Enfermedad de Parkinson/metabolismo , Cationes
2.
ACS Omega ; 8(25): 22684-22697, 2023 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-37396248

RESUMEN

Lablab purpureus from the Fabaceae family has been reported to have antiviral properties and used in traditional medical systems like ayurveda and Chinese medicine and has been employed to treat a variety of illnesses including cholera, food poisoning, diarrhea, and phlegmatic diseases. The bovine alphaherpesvirus-1 (BoHV-1) is notorious for causing significant harm to the veterinary and agriculture industries. The removal of the contagious BoHV-1 from host organs, particularly in those reservoir creatures, has required the use of antiviral drugs that target infected cells. This study developed LP-CuO NPs from methanolic crude extracts, and FTIR, SEM, and EDX analyses were used to confirm their formation. SEM analysis revealed that the LP-CuO NPs had a spherical shape with particle sizes between 22 and 30 nm. Energy-dispersive X-ray pattern analysis revealed the presence of only copper and oxide ions. By preventing viral cytopathic effects in the Madin-Darby bovine kidney cell line, the methanolic extract of Lablab purpureus and LP-CuO NPs demonstrated a remarkable dose-dependent anti-BoHV-1 action in vitro. Furthermore, molecular docking and molecular dynamics simulation studies of bio-actives from Lablab purpureus against the BoHV-1 viral envelope glycoprotein disclosed effective interactions between all phytochemicals and the protein, although kievitone was found to have the highest binding affinity, with the greatest number of interactions, which was also validated with molecular dynamics simulation studies. Understanding the chemical reactivity qualities of the four ligands was taken into consideration facilitated by the global and local descriptors, which aimed to predict the chemical reactivity descriptors of the studied molecules through the conceptual DFT methodology, which, along with ADMET finding, support the in vitro and in silico results.

3.
Antioxidants (Basel) ; 12(6)2023 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-37372040

RESUMEN

Parkinson's disease (PD) is characterized by dopaminergic neuron degeneration and the accumulation of neuronal inclusions known as Lewy bodies, which are formed by aggregated and post-translationally modified α-synuclein (αS). Oxidative modifications such as the formation of 3-nitrotyrosine (3-NT) or di-tyrosine are found in αS deposits, and they could be promoted by the oxidative stress typical of PD brains. Many studies have tried to elucidate the molecular mechanism correlating nitroxidation, αS aggregation, and PD. However, it is unclear how nitroxidation affects the physiological function of αS. To clarify this matter, we synthetized an αS with its Tyr residues replaced by 3-NT. Its study revealed that Tyr nitroxidation had no effect on either the affinity of αS towards anionic micelles nor the overall structure of the micelle-bound αS, which retained its α-helical folding. Nevertheless, we observed that nitroxidation of Y39 lengthened the disordered stretch bridging the two consecutive α-helices. Conversely, the affinity of αS towards synaptic-like vesicles diminished as a result of Tyr nitroxidation. Additionally, we also proved that nitroxidation precluded αS from performing its physiological function as a catalyst of the clustering and the fusion of synaptic vesicles. Our findings represent a step forward towards the completion of the puzzle that must explain the molecular mechanism behind the link between αS-nitroxidation and PD.

5.
Int J Biol Macromol ; 229: 92-104, 2023 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-36584779

RESUMEN

Human alpha-synuclein (αS) is an intrinsically disordered protein highly expressed in dopaminergic neurons. Its amyloid aggregates are the major component of Lewy bodies, which are considered a hallmark of Parkinson's disease (PD). αS has four different Met, which are particularly sensitive to oxidation, as most of them are found as Met sulfoxide (MetO) in the αS deposits. Consequently, researchers have invested mounting efforts trying to elucidate the molecular mechanisms underlying the links between oxidative stress, αS aggregation and PD. However, it has not been described yet the effect of Met oxidation on the physiological function of αS. Trying to shed light on this aspect, we have here studied a synthetic αS that displayed all its Met replaced by MetO moieties (αS-MetO). Our study has allowed to prove that MetO diminishes the affinity of αS towards anionic micelles (SDS), although the micelle-bound fraction of αS-MetO still adopts an α-helical folding resembling that of the lipid-bound αS. MetO also diminishes the affinity of αS towards synaptic-like vesicles, and its hindering effect is much more pronounced than that displayed on the αS-micelle affinity. Additionally, we have also demonstrated that MetO impairs the physiological function of αS as a catalyst of the clustering and the fusion of synaptic vesicles (SVs). Our findings provide a new understanding on how Met oxidation affects one of the most relevant biological functions attributed to αS that is to bind and cluster SVs along the neurotransmission.


Asunto(s)
Enfermedad de Parkinson , alfa-Sinucleína , Humanos , alfa-Sinucleína/metabolismo , Metionina/metabolismo , Micelas , Vesículas Sinápticas/metabolismo , Enfermedad de Parkinson/metabolismo , Racemetionina/metabolismo
6.
J Biomol Struct Dyn ; 41(20): 10869-10884, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-36576118

RESUMEN

The spike (S) glycoprotein and nucleocapsid (N) proteins are the crucial pathogenic proteins of the Severe Acute Respiratory Syndrome Coronavirus-2 (SARS CoV-2) virus during its interaction with the host. Even FDA-approved drugs like dexamethasone and grazoprevir are not able to curb the viral progression inside the host and are reported with adverse effects on body metabolism. In this context, we aim to report corilagin a novel, potential dual inhibitor of S and N proteins from Terminalia chebula. The bioactive compounds of T. chebula were subjected to a series of computational investigations including molecular docking simulations, molecular dynamics (MD) simulations, binding free energy calculations, and PASS pharmacological analysis. The results obtained from these studies revealed that corilagin was highly interactive with the S (-8.9 kcal/mol) and N (-9.2 kcal/mol) proteins, thereby showing dual inhibition activity. It was also found to be stable enough to induce biological activity inside the inhibitor binding pocket of the target enzymes throughout the dynamics simulation run for 100 ns. This is also confirmed by the changes in the protein conformations, evaluated using free energy landscapes. Outcomes from this investigation identify corilagin as the lead potential dual inhibitor of S and N proteins of SARS-CoV-2, which could be taken for biological studies in near future.Communicated by Ramaswamy H. Sarma.


Asunto(s)
COVID-19 , Terminalia , SARS-CoV-2 , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Inhibidores de Proteasas
7.
Sci Rep ; 12(1): 22446, 2022 12 27.
Artículo en Inglés | MEDLINE | ID: mdl-36575224

RESUMEN

Cladosporium spp. have been reported for their great diversity of secondary metabolites which represent as a prominent base material for verifying the biological activities. Several bioactive compounds which have antimicrobial, cytotoxic, quorum sensing inhibitory and phytotoxic activities have been isolated from Cladosporium species. Most of them are still needed to be explored for their anticancer properties. Therefore, the present study is focused on screening and identifying the bioactive compounds of Cladosporium spp. for their anticancer activity via the integrated approaches of Molecular Docking (MD), Molecular Dynamics Simulation (MDS) and Density Functional Theory (DFT) studies. A total of 123 bioactive compounds of Cladosporium spp. were explored for their binding affinity with the selected breast cancer drug target receptor such as estrogen receptor alpha (PDB:6CBZ). The Molecular Docking studies revealed that amongst the bioactive compounds screened, Altertoxin X and Cladosporol H showed a good binding affinity of - 10.5 kcal/mol and - 10.3 kcal/mol, respectively, with the estrogen receptor alpha when compared to the reference compound (17[Formula: see text]-Estradiol: - 10.2 kcal/mol). The MDS study indicated the stable binding patterns and conformation of the estrogen receptor alpha-Altertoxin X complex in a stimulating environment. In addition, in silico absorption, distribution, metabolism, excretion and toxicity (ADMET) study suggested that Altertoxin X has a good oral bioavailability with a high LD[Formula: see text] value of 2.375 mol/kg and did not cause any hepatotoxicity and skin sensitization. In summary, the integrated approaches revealed that Altertoxin X possesses a promising anticancer activity and could serve as a new therapeutic drug for breast cancer treatment.


Asunto(s)
Antineoplásicos , Neoplasias , Simulación del Acoplamiento Molecular , Cladosporium , Receptor alfa de Estrógeno , Simulación de Dinámica Molecular , Antineoplásicos/farmacología , Antineoplásicos/química
8.
Molecules ; 27(23)2022 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-36500380

RESUMEN

The ever-expanding pandemic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has gained attention as COVID-19 and caused an emergency in public health to an unmatched level to date. However, the treatments used are the only options; currently, no effective and licensed medications are available to combat disease transmission, necessitating further research. In the present study, an in silico-based virtual screening of anti-HIV bioactive compounds from medicinal plants was carried out through molecular docking against the main protease (Mpro) (PDB: 6LU7) of SARS-CoV-2, which is a key enzyme responsible for virus replication. A total of 16 anti-HIV compounds were found to have a binding affinity greater than -8.9 kcal/mol out of 150 compounds screened. Pseudohypericin had a high affinity with the energy of -10.2 kcal/mol, demonstrating amino acid residual interactions with LEU141, GLU166, ARG188, and GLN192, followed by Hypericin (-10.1 kcal/mol). Moreover, the ADME (Absorption, Distribution, Metabolism and Excretion) analysis of Pseudohypericin and Hypericin recorded a low bioavailability (BA) score of 0.17 and violated Lipinski's rule of drug-likeness. The docking and molecular simulations indicated that the quinone compound, Pseudohypericin, could be tested in vitro and in vivo as potent molecules against COVID-19 disease prior to clinical trials.This was also supported by the theoretical and computational studies conducted. The global and local descriptors, which are the underpinnings of Conceptual Density FunctionalTheory (CDFT) have beenpredicted through successful model chemistry, hoping that they could be of help in the comprehension of the chemical reactivity properties of the molecular systems considered in this study.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Simulación del Acoplamiento Molecular , Proteasas 3C de Coronavirus , Simulación de Dinámica Molecular , Inhibidores de Proteasas/farmacología
10.
PLoS One ; 17(10): e0275432, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36201520

RESUMEN

Breast cancer is the second most common malignancy in females worldwide and poses a great challenge that necessitates the identification of novel therapeutic agents from several sources. This research aimed to study the molecular docking and molecular dynamics simulations of four proteins (such as PDB: 6CBZ, 1FDW, 5GWK and 2WTT) with the selected phytochemicals from Withania somnifera to identify the potential inhibitors for breast cancer. The molecular docking result showed that among 44 compounds, two of them, Ashwagandhanolide and Withanolide sulfoxide have the potential to inhibit estrogen receptor alpha (ERα), 17-beta-hydroxysteroid -dehydrogenase type 1 (17ß-HSD1), topoisomerase II alpha (TOP2A) and p73 tetramerization domain that are expressed during breast cancer. The molecular dynamics (MD) simulations results suggested that Ashwagandhanolide remained inside the binding cavity of four targeted proteins and contributed favorably towards forming a stable protein-ligand complex throughout the simulation. Absorption, Distribution, Metabolism, Excretion and Toxicity (ADMET) properties confirmed that Ashwagandhanolide is hydrophobic and has moderate intestinal permeability, good intestinal absorption, and poor skin permeability. The compound has a relatively low VDss value (-1.652) and can be transported across ABC transporter and good central nervous system (CNS) permeability but did not easily cross the blood-brain barrier (BBB). This compound does not possess any mutagenicity, hepatotoxicity and skin sensitization. Based on the results obtained, the present study highlights the anticancer potential of Ashwagandhanolide, a compound from W. somnifera. Furthermore, in vitro and in vivo studies are necessary to perform before clinical trials to prove the potentiality of Ashwagandhanolide.


Asunto(s)
Neoplasias , Withania , Witanólidos , Transportadoras de Casetes de Unión a ATP , ADN-Topoisomerasas de Tipo II , Sistemas de Liberación de Medicamentos , Ergosterol/análogos & derivados , Receptor alfa de Estrógeno , Hidroxiesteroides , Ligandos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Sulfóxidos , Withania/química , Witanólidos/farmacología
11.
Molecules ; 27(19)2022 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-36235085

RESUMEN

Herein we describe the synthesis of a series of nickel(II) complexes (C1-C3) with Schiff bases (HL1-HL3) derived from 4-amino-5-mercapto-3-methyl-1,2,4-triazole and ortho/meta/para-nitrobenzaldehyde having composition [Ni(L)2(H2O)2]. The obtained ligands and their complexes were characterized using physico-chemical techniques viz., elemental analysis, magnetic moment study, spectral (electronic, FT-IR, 1H-NMR) and thermal analysis. The elemental analysis and spectral analysis revealed that Schiff bases behave as monoanionic bidentate ligands towards the Ni(II) ion. Whereas, the magnetic moment study suggested the octahedral geometry of all the Ni(II) complexes. The thermal behavior of the complexes has been studied by thermogravimetric analysis and agrees well with the composition of complexes. Further, the biological activities such as antimicrobial and antifungal studies of the Schiff bases and Ni(II) complexes have been screened against bacterial species (Staphylococcus aureus and Pseudomonas aeruginosa) and fungal species (Aspergillus niger and Candida albicans) activity by MIC method, the results of which revealed that metal complexes exhibited significant antimicrobial activities than their respective ligands against the tested microbial species. Furthermore, the molecular docking technique was employed to investigate the active sites of the selected protein, which indeed helped us to screen the potential anticancer agents among the synthesized ligand and complexes. Further, these compounds have been screened for their in vitro anticancer activity using OVCAR-3 cell line. The results revealed that the complexes are more active than the ligands.


Asunto(s)
Antiinfecciosos , Antineoplásicos , Complejos de Coordinación , Neoplasias Ováricas , Antibacterianos/química , Antiinfecciosos/química , Antifúngicos/química , Antifúngicos/farmacología , Antineoplásicos/química , Antineoplásicos/farmacología , Apoptosis , Benzaldehídos , Línea Celular Tumoral , Complejos de Coordinación/química , Complejos de Coordinación/farmacología , Femenino , Humanos , Ligandos , Pruebas de Sensibilidad Microbiana , Simulación del Acoplamiento Molecular , Níquel/química , Bases de Schiff/química , Espectroscopía Infrarroja por Transformada de Fourier , Triazoles/química , Triazoles/farmacología
12.
Int J Mol Sci ; 23(18)2022 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-36142522

RESUMEN

Outdoor air pollution is a mixture of multiple atmospheric pollutants, among which nitrogen oxide (NOx) stands out due to its association with several diseases. NOx reactivity can conduct to DNA damage as severe as interstrand crosslinks (ICL) formation, that in turn is able to block DNA replication and transcription. Experimental studies have suggested that the ICL formation due to NOx is realized through a diazonium intermediate (DI). In this work, we have modeled the DI structure, including a DNA double-strand composed of two base pairs GC/CG, being diazotized as one of the guanine nucleotides. The structural stability of DNA with DI lesion was essayed through 500 ns molecular dynamics simulations. It was found that the DNA structure of the oligonucleotide is stable when the DI is present since the loss of a Guanine-Cytosine hydrogen bond is replaced by the presence of two cation-π interactions. Additionally, we have studied the mechanism of formation of a crosslink between the two guanine nucleobases from the modeled DI by carrying out DFT calculations at the M06-L/DNP+ level of theory. Our results show that the mechanism is thermodynamically favored by a strong stabilization of the ICL product, and the process is kinetically viable since its limiting stage is accessible.


Asunto(s)
Contaminantes Ambientales , Citosina/química , ADN/química , Daño del ADN , Guanina/química , Nucleótidos de Guanina , Óxidos de Nitrógeno , Oligonucleótidos
14.
J Mol Model ; 28(8): 209, 2022 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-35789297

RESUMEN

Peptides are currently the most promising lead molecules. Quorum sensing peptides have a variety of structural features and are regularly exposed to post-translational modifications. Antiparkinsonian drugs lose their efficacy after a long period of use, and patients develop motor problems such as drug-induced dyskinesia (DIDs). The interaction between PDE10A and cAMP is necessary for dopamine neurotransmission and may play a role in Parkinson's disease pathogenesis. cAMP and cGMP are cyclic nucleotides that act as secondary messengers in the signal transduction pathway, influencing a range of CNS activities. PDE enzymes hydrolyze phosphodiester bonds to break down cAMP and cGMP, allowing them to control intracellular levels of these second messengers effectively. PDE expression, and hence cyclic nucleotide levels and their downstream targets, may change with age and in numerous age-related illnesses, including Parkinson's disease, according to mounting evidence. At the peak of dyskinesias, cyclic nucleotide levels were lower, and using phosphodiesterase inhibitors before antiparkinsonian medicines reduced the severity of dyskinesias. In a recent study, PapRIV was found to have the ability to activate BV-2 microglia cells, indicating that this quorum sensing peptide may play a role in gut-brain contact. As a result of the current in silico work, mainly focused on QSPs as a lead molecule for inhibiting PDE10A, the SRNAT QSP sequence has been a potent molecule in molecular docking and molecular dynamics simulations. Furthermore, we can test the efficiency of therapeutic components in vitro and in vivo utilizing this computational approach against PDE10A.


Asunto(s)
Discinesias , Enfermedad de Parkinson , GMP Cíclico/metabolismo , Humanos , Simulación del Acoplamiento Molecular , Péptidos/uso terapéutico , Hidrolasas Diéster Fosfóricas/metabolismo , Hidrolasas Diéster Fosfóricas/uso terapéutico , Percepción de Quorum
15.
Cell Mol Life Sci ; 79(6): 342, 2022 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-35662377

RESUMEN

Parkinson's disease (PD) is one of the most prevalent neurodegenerative disorders affecting the worldwide population. One of its hallmarks is the intraneuronal accumulation of insoluble Lewy bodies (LBs), which cause the death of dopaminergic neurons. α-Synuclein (αS) is the main component of these LBs and in them, it commonly contains non-enzymatic post-translational modifications, such as those resulting from its reaction with reactive carbonyl species arising as side products of the intraneuronal glycolysis (mainly methylglyoxal). Consequently, lysines of the αS found in LBs of diabetic individuals are usually carboxyethylated. A precise comprehension of the effect of Nε-(carboxyethyl)lysine (CEL) on the aggregation of αS and on its physiological function becomes crucial to fully understand the molecular mechanisms underlying the development of diabetes-induced PD. Consequently, we have here used a synthetic αS where all its Lys have been replaced by CEL moieties (αS-CEL), and we have studied how these modifications could impact on the neurotransmission mechanism. This study allows us to describe how the non-enzymatic glycosylation (glycation) affects the function of a protein like αS, involved in the pathogenesis of PD. CEL decreases the ability of αS to bind micelles, although the micelle-bound fraction of αS-CEL still displays an α-helical fold resembling that of the lipid-bound αS. However, CEL completely abolishes the affinity of αS towards synaptic-like vesicles and, consequently, it hampers its physiological function as a catalyst of the clustering and the fusion of the synaptic vesicles.


Asunto(s)
Enfermedad de Parkinson , alfa-Sinucleína , Neuronas Dopaminérgicas/metabolismo , Glicosilación , Humanos , Enfermedad de Parkinson/patología , Vesículas Sinápticas/metabolismo , alfa-Sinucleína/metabolismo
16.
Pharmaceuticals (Basel) ; 15(5)2022 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-35631336

RESUMEN

Bioactive peptides are chemical compounds created through the covalent bonding of amino acids, known as amide or peptide bonds. Due to their unusual chemistry and various biological effects, marine bioactive peptides have garnered considerable research. The effectiveness of a bioactive marine peptide is attributed to its structural features, such as amino acid content and sequence, which vary depending on the degree of action. Cyclic peptides combine several favorable properties such as good binding affinity, target selectivity and low toxicity that render them an attractive modality for the development of therapeutics. The apratoxins are a class of molecules formed by a series of cyclic depsipeptides with potent cytotoxic activities. The objective of this research is to pursue a computational prospection of the molecular structures and properties of several cylopeptides of marine origin with potential therapeutic applications. The methodology will be based on the determination of the chemical reactivity descriptors of the studied molecules through the consideration of the Conceptual DFT model and validation of a particular model chemistry, MN12SX/Def2TZVP/H2O. These studies will be complemented by a determination of the pharmacokinetics and ADMET parameters by resorting to certain cheminformatics tools.

17.
Molecules ; 27(4)2022 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-35209226

RESUMEN

Researchers are interested in Schiff bases and their metal complexes because they offer a wide range of applications. The chemistry of Schiff bases of heterocompounds has got a lot of attention because of the metal's ability to coordinate with Schiff base ligands. In the current study, a new bidentate Schiff base ligand, N-((1H-pyrrol-2-yl)methylene)-6-methoxypyridin-3-amine (MPM) has been synthesized by condensing 6-methoxypyridine-3-amine with pyrrole-2-carbaldehyde. Further, MPM is used to prepare Cu(II) and Co(II) metal complexes. Analytical and spectroscopic techniques are used for the structural elucidation of the synthesized compounds. Both MPM and its metal complexes were screened against Escherichia coli, Bacillus subtilis, Staphylococcus aureus and Klebsiella pneumoniae species for antimicrobial studies. Furthermore, these compounds were subjected to in silico studies against bacterial proteins to comprehend their best non-bonded interactions. The results confirmed that the Schiff base ligand show considerably higher binding affinity with good hydrogen bonding and hydrophobic interactions against various tested microbial species. These results were complemented with a report of the Conceptual DFT global reactivity descriptors of the studied compounds together with their biological scores and their ADMET computed parameters.


Asunto(s)
Antiinfecciosos/química , Antiinfecciosos/farmacología , Cobalto/química , Complejos de Coordinación/química , Complejos de Coordinación/farmacología , Cobre/química , Antibacterianos/química , Antibacterianos/farmacología , Antiinfecciosos/síntesis química , Técnicas de Química Sintética , Complejos de Coordinación/síntesis química , Teoría Funcional de la Densidad , Relación Dosis-Respuesta a Droga , Pruebas de Sensibilidad Microbiana , Modelos Químicos , Modelos Moleculares , Estructura Molecular , Bases de Schiff/química , Análisis Espectral
18.
Mar Drugs ; 20(2)2022 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-35200627

RESUMEN

As a continuation of our research on the chemical reactivity, pharmacokinetics and ADMET properties of cyclopeptides of marine origin with potential therapeutic abilities, in this work our already presented integrated molecular modeling protocol has been used for the study of the chemical reactivity and bioactivity properties of the Veraguamides A-G family of marine natural drugs. This protocol results from the estimation of the conceptual density functional theory (CDFT) chemical reactivity descriptors together with several chemoinformatics tools commonly considered within the process of development of new therapeutic drugs. CP-CDFT is a branch of computational chemistry and molecular modeling dedicated to the study of peptides, and it is a protocol that allows the estimation with great accuracy of the CDFT-based reactivity descriptors and the associated physical and chemical properties, which can aid in determining the ability of the studied peptides to behave as potential useful drugs. Moreover, the superiority of the MN12SX density functional over other long-range corrected density functionals for the prediction of chemical and physical properties in the presence of water as the solvent is clearly demonstrated. The research was supplemented with an investigation of the bioactivity of the molecular systems and their ADMET (absorption, distribution, metabolism, excretion, and toxicity) parameters, as is customary in medicinal chemistry. Some instances of the CDFT-based chemical reactivity descriptors' capacity to predict the pKas of peptides as well as their potential as AGE inhibitors are also shown.


Asunto(s)
Organismos Acuáticos/metabolismo , Productos Biológicos/farmacocinética , Depsipéptidos/farmacocinética , Productos Biológicos/química , Productos Biológicos/toxicidad , Quimioinformática , Teoría Funcional de la Densidad , Depsipéptidos/química , Depsipéptidos/toxicidad , Modelos Moleculares
19.
Sci Rep ; 12(1): 506, 2022 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-35017576

RESUMEN

Aspergillipeptide D is a cyclic pentapeptide isolated from the marine gorgonian Melitodes squamata-derived fungus Aspergillus sp. SCSIO 41501 that it has been shown to present moderate activity against herpes virus simplex type 1 (HSV-1). Thus, this paper presents the results of a computational study of this cyclopentapeptide's chemical reactivity and bioactivity properties using a CDFT-based computational peptidology (CDFT-CP) methodology, which is derived from combining chemical reactivity descriptors derived from Conceptual Density Functional Theory (CDFT) and some Cheminformatics tools which may be used. This results in an improvement of the virtual screening procedure by a similarity search allowing the identification and validation of the known ability of the peptide to act as a possible useful drug. This was followed by an examination of the drug's bioactivity and pharmacokinetics indices in relation to the ADMET (Absorption, Distribution, Metabolism, Excretion, and Toxicity) characteristics. The findings provide further evidence of the MN12SX density functional's superiority in proving the Janak and Ionization Energy theorems using the proposed KID approach. This has proven to be beneficial in accurately predicting CDFT reactivity characteristics, which aid in the understanding of chemical reactivity. The Computational Pharmacokinetics study revealed the potential ability of Aspergillipeptide D as a therapeutic drug through the interaction with different target receptors. The ADMET indices confirm this assertion through the absence of toxicity and good absorption and distribution properties.


Asunto(s)
Antozoos/microbiología , Aspergillus/metabolismo , Péptidos Cíclicos/química , Péptidos Cíclicos/farmacología , Animales , Aspergillus/química , Aspergillus/aislamiento & purificación , Células CACO-2 , Quimioinformática , Teoría Funcional de la Densidad , Humanos , Estructura Molecular , Péptidos Cíclicos/efectos adversos , Péptidos Cíclicos/metabolismo
20.
Molecules ; 26(22)2021 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-34833955

RESUMEN

NAD(P)H:quinone acceptor oxidoreductase-1 (NQO1) is a ubiquitous flavin adenine dinucleotide-dependent flavoprotein that promotes obligatory two-electron reductions of quinones, quinonimines, nitroaromatics, and azo dyes. NQO1 is a multifunctional antioxidant enzyme whose expression and deletion are linked to reduced and increased oxidative stress susceptibilities. NQO1 acts as both a tumor suppressor and tumor promoter; thus, the inhibition of NQO1 results in less tumor burden. In addition, the high expression of NQO1 is associated with a shorter survival time of cancer patients. Inhibiting NQO1 also enables certain anticancer agents to evade the detoxification process. In this study, a series of phytobioactives were screened based on their chemical classes such as coumarins, flavonoids, and triterpenoids for their action on NQO1. The in silico evaluations were conducted using PyRx virtual screening tools, where the flavone compound, Orientin showed a better binding affinity score of -8.18 when compared with standard inhibitor Dicumarol with favorable ADME properties. An MD simulation study found that the Orientin binding to NQO1 away from the substrate-binding site induces a potential conformational change in the substrate-binding site, thereby inhibiting substrate accessibility towards the FAD-binding domain. Furthermore, with this computational approach we are offering a scope for validation of the new therapeutic components for their in vitro and in vivo efficacy against NQO1.


Asunto(s)
Antineoplásicos/farmacología , NAD(P)H Deshidrogenasa (Quinona)/antagonistas & inhibidores , Neoplasias/tratamiento farmacológico , Fitoquímicos/farmacología , Antioxidantes/farmacología , Sitios de Unión/efectos de los fármacos , Cumarinas/farmacología , Flavonas/farmacología , Flavonoides/farmacología , Humanos , Oxidación-Reducción/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Unión Proteica/efectos de los fármacos , Triterpenos/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...